10 research outputs found

    Nouveaux procédés verts d'oxydation de l'acide oléique

    Get PDF
    Dans un contexte de rarĂ©faction des ressources pĂ©troliĂšres et de pressions environnementales, l’industrie chimique a besoin d'innover en dĂ©veloppant de nouvelles filiĂšres destinĂ©es Ă  l'Ă©laboration de bioproduits, Ă  partir de matiĂšres premiĂšres d'origine vĂ©gĂ©tale. Les acides gras insaturĂ©s obtenus Ă  partir des huiles vĂ©gĂ©tales, constituent ainsi une ressource renouvelable Ă  fort potentiel permettant de diversifier les approvisionnements d'origine pĂ©troliĂšre. Notre intĂ©rĂȘt s'est portĂ© sur la rĂ©action de scission oxydative d’acides gras insaturĂ©s pour conduire Ă  des monoacides et diacides Ă  chaĂźnes courtes et impaires, peu ou pas disponibles Ă  l’état naturel. Ce type de chaĂźnes hydrocarbonĂ©es est recherchĂ© dans l’industrie, car elles possĂšdent des propriĂ©tĂ©s spĂ©cifiques, mais elles ne sont actuellement produites qu'Ă  partir de ressources fossiles. L'objectif Ă©tait donc de mettre au point un procĂ©dĂ© de clivage oxydatif performant, moins onĂ©reux et moins polluant que l’ozonolyse, le seul procĂ©dĂ© industriel opĂ©rationnel. Les conditions oxydantes sĂ©lectionnĂ©es font appel Ă  l’eau oxygĂ©nĂ©e en tant qu’oxydant, associĂ©e Ă  un catalyseur de transfert de phase, sans avoir recours Ă  un solvant organique. Plusieurs catalyseurs de transfert de phase Q3{PO4[WO(O2)2]4} ont Ă©tĂ© prĂ©parĂ©s Ă  partir de l’acide tungstophosphorique, d’eau oxygĂ©nĂ©e et d'un sel d’ammonium quaternaire (Q+,Cl-), afin de comparer leur efficacitĂ© Ă  transfĂ©rer l'oxygĂšne vers le substrat en phase organique. Une optimisation des paramĂštres rĂ©actionnels a Ă©tĂ© effectuĂ©e avec le catalyseur le plus performant. De plus, deux protocoles ont Ă©tĂ© mis au point, pour la prĂ©paration in-situ du catalyseur et pour sa rĂ©cupĂ©ration en fin de rĂ©action. Le procĂ©dĂ© a Ă©tĂ© gĂ©nĂ©ralisĂ© Ă  des dĂ©rivĂ©s d’acides gras dans le but d’obtenir d'autres acides Ă  chaĂźnes courtes, rĂ©pondant Ă  une large gamme d'applications. Le gain environnemental liĂ© Ă  ce nouveau procĂ©dĂ© a Ă©tĂ© Ă©valuĂ© par le calcul d’indicateurs verts. Afin d’envisager un recyclage plus aisĂ© du catalyseur, l’anion oxodiperoxotungstate {PO4[WO(O2)2]4}3-, l’espĂšce active du catalyseur, a Ă©tĂ© supportĂ© sur des rĂ©sines Ă©changeuses d’anions. Deux types de rĂ©sines macroporeuses ont Ă©tĂ© testĂ©es : des rĂ©sines commerciales (Amberlite IRA 900 et Lewatit K7367) et des rĂ©sines modifiĂ©es (type Merrifield). Nous avons montrĂ© que ces derniĂšres conduisent Ă  de meilleurs rendements de scission oxydative de l’acide olĂ©ique que les rĂ©sines commerciales, et ce, malgrĂ© la prĂ©sence de solvants. Cependant, l’immobilisation de l’anion oxodiperoxotungstate sur les rĂ©sines commerciales a permis la synthĂšse en une seule Ă©tape d’acĂ©tals, composĂ©s prĂ©sentant un grand intĂ©rĂȘt pour la synthĂšse de dĂ©rivĂ©s Ă  haute valeur ajoutĂ©e. En utilisant l’acĂ©tone, Ă  la fois comme rĂ©actif et solvant, nous avons obtenu de bons rendements en cĂ©tal. De plus, la rĂ©action d’acĂ©talisation « one-pot » de l’acide olĂ©ique a pu ĂȘtre Ă©tendue Ă  d’autres solvants (alcools), offrant la possibilitĂ© de synthĂ©tiser un large panel d’acĂ©tals. Le procĂ©dĂ© dĂ©veloppĂ© est particuliĂšrement intĂ©ressant car il conduit directement Ă  la synthĂšse d’acĂ©tals ou de cĂ©tals Ă  partir d’un acide gras insaturĂ© biosourcĂ©, en Ă©vitant les Ă©tapes de rĂ©actions intermĂ©diaires. ABSTRACT : In a context of scarce oil resources and environmental pressures, the chemical industry needs to innovate by developing new production chains aiming the design of bioproducts from biobased raw materials. Unsaturated fatty acids derived from vegetable oils, thus represents renewable resources with a great potential, allowing to diversify petroleum based supplies. Our interest is focused on the oxidative cleavage reaction of unsaturated fatty acids to yield mono-acids and di-acids with shorter and odd hydrocarbon chains, which are not available at a natural state. Such hydrocarbon chains are attractive for industry because they meet specific properties. But, they are currently only produced from fossil resources. Therefore, the objective was to develop an efficient method for oxidative cleavage, less expensive and less polluting than ozonolysis, the only operational industrial process. The selected oxidizing conditions employs hydrogen peroxide as oxidant, together with a phase transfer catalyst, without using an organic solvent. Several phase transfer catalysts Q3{PO4[WO(O2)2]4} were prepared from tungstophosphoric acid, hydrogen peroxide and a quaternary ammonium salt (Q+,Cl-), in order to compare their effectiveness in transferring oxygen to the substrate in the organic phase. An optimization of reaction parameters was carried out with the most performing catalyst. In addition, two protocols have been developed for the in-situ preparation of the catalyst and its recovery after reaction. The method was extended to fatty acids derivatives, in order to obtain other short chain acids, having a wide range of applications. The environmental benefits associated with this new method were evaluated by calculating green indicators. To consider an easier recycling of the catalyst, the oxodiperoxotungstate anion {PO4[WO(O2)2]4}3-, the active species of the catalyst was supported on anion-exchange resins. Two types of macroporous resins were tested: commercial resins (Amberlite IRA 900 and Lewatit K7367) and modified resins (type Merrifield). We showed that the modified resins, lead to the oxidative cleavage of oleic acid with higher yields than commercial ones, despite the presence of solvent. However, the immobilisation of the oxodiperoxtungstate anion on commercial resins allows the one-step synthesis of acetals, compounds of great interest for the synthesis of derivatives with a high added value. Using acetone as both reagent and solvent, we obtained good yields in ketal. Furthermore, the "one-pot" acetalization reaction of oleic acid was extended to other solvents (alcohols) as an opportunity to synthesize a wide range of acetals. The developed process is particularly interesting as it leads to the direct synthesis of ketal or acetals from an unsaturated fatty acid, avoiding the intermediate reaction step

    From crops to products for crops: preserving the ecosystem through the use of bio-based molecules

    Get PDF
    In a context of dwindling oil reserves and environmental pressures, the chemical industry needs to innovate by developing new processes for producing bioproducts from raw plant materials. Unsaturated fatty acids from vegetable oils constitute a highly promising renewable resource that can be used to diversify productions, decreasing reliance on petroleum. A starting material rich in oleic acid has been obtained through the selection of high-oleic sunflower varieties and enzymatic hydrolysis of the oil they produce. The double bonds of this unsaturated raw material have been cleaved in green oxidizing conditions involving a biphasic lipophilic-aqueous system including hydrogen peroxide as an oxidant and a peroxo-tungsten complex Q3 {PO2[WO(O2)2]4} as a phase-transfer catalyst (PTC) and co-oxidant. This PTC efficiently transferred oxygen to the substrate in the lipophilic phase. A mono-acid (pelargonic acid) and a di-acid (azelaic acid), with shorter, unusual hydrocarbon chains not present in the natural state, were synthesized and purified through an intensive process. Pelargonic acid was then formulated as an environmentally friendly biocontrol agent for weeds. We extended this green process of oxidative scission to other fatty acids and derivatives, to obtain other short-chain acids with diverse potential applications. This production chain (crops, reaction and purification processes, products, applications) is based on a sustainable development strategy. Dans un contexte de diminution des rĂ©serves fossiles et de pressions rĂ©glementaires et environnementales, l’industrie chimique tend Ă  innover en dĂ©veloppant de nouveaux procĂ©dĂ©s pour la production de bioproduits d’origine vĂ©gĂ©tale. Les acides gras insaturĂ©s d’une huile vĂ©gĂ©tale constitue une ressource renouvelable prometteuse qui peut ĂȘtre utilisĂ©e pour diversifier les productions et rĂ©duire la dĂ©pendance vis-Ă -vis du pĂ©trole. Dans cet article, une matiĂšre premiĂšre riche en acide olĂ©ique a Ă©tĂ© obtenue par l’hydrolyse enzymatique de l’huile de tournesol hautement olĂ©ique, obtenue par sĂ©lection variĂ©tale. Les doubles liaisons de cette matiĂšre premiĂšre insaturĂ©e ont Ă©tĂ© clivĂ©es dans des conditions oxydantes impliquant un systĂšme biphasique aqueux-lipophile, avec le peroxyde d’hydrogĂšne comme oxydant et le complexe peroxo-tungtĂšne Q3{PO2[WO(O2)2]4} comme catalyseur de transfert de phase (CTP) et co-oxydant. Ce CTP a permis d’assurer un transfert efficace vers le substrat en phase lipophile. Un mono-acide (acide pĂ©largonique) et un di-acide (acide azĂ©laĂŻque) Ă  chaĂźnes impaires plus courtes, peu prĂ©sentes Ă  l’état naturel, ont Ă©tĂ© ainsi synthĂ©tisĂ©s et purifiĂ©s grĂące Ă  un procĂ©dĂ© intensifiĂ©. L’acide pĂ©largonique a Ă©tĂ© formulĂ© en tant qu’agent de biocontrĂŽle Ă©cocompatible. Ce procĂ©dĂ© vert de scission oxydante a Ă©tĂ© appliquĂ© Ă  d’autres acides gras et Ă  leurs dĂ©rivĂ©s pour obtenir de nouveaux acides Ă  chaĂźnes courtes ayant diffĂ©rentes applications potentielles. Cette filiĂšre de production (culture, procĂ©dĂ©s de transformation et de purification, produits et leurs application) est basĂ©e sur une stratĂ©gie de dĂ©veloppement durable

    Nouveaux procédés verts d'oxydation de l'acide oléique

    Get PDF
    Dans un contexte de rarĂ©faction des ressources pĂ©troliĂšres et de pressions environnementales, l industrie chimique a besoin d'innover en dĂ©veloppant de nouvelles filiĂšres destinĂ©es Ă  l'Ă©laboration de bioproduits, Ă  partir de matiĂšres premiĂšres d'origine vĂ©gĂ©tale. Les acides gras insaturĂ©s obtenus Ă  partir des huiles vĂ©gĂ©tales, constituent ainsi une ressource renouvelable Ă  fort potentiel permettant de diversifier les approvisionnements d'origine pĂ©troliĂšre. Notre intĂ©rĂȘt s'est portĂ© sur la rĂ©action de scission oxydative d acides gras insaturĂ©s pour conduire Ă  des monoacides et diacides Ă  chaĂźnes courtes et impaires, peu ou pas disponibles Ă  l Ă©tat naturel. Ce type de chaĂźnes hydrocarbonĂ©es est recherchĂ© dans l industrie, car elles possĂšdent des propriĂ©tĂ©s spĂ©cifiques, mais elles ne sont actuellement produites qu'Ă  partir de ressources fossiles. L'objectif Ă©tait donc de mettre au point un procĂ©dĂ© de clivage oxydatif performant, moins onĂ©reux et moins polluant que l ozonolyse, le seul procĂ©dĂ© industriel opĂ©rationnel. Les conditions oxydantes sĂ©lectionnĂ©es font appel Ă  l eau oxygĂ©nĂ©e en tant qu oxydant, associĂ©e Ă  un catalyseur de transfert de phase, sans avoir recours Ă  un solvant organique. Plusieurs catalyseurs de transfert de phase Q3{PO4[WO(O2)2]4} ont Ă©tĂ© prĂ©parĂ©s Ă  partir de l acide tungstophosphorique, d eau oxygĂ©nĂ©e et d'un sel d ammonium quaternaire (Q+,Cl-), afin de comparer leur efficacitĂ© Ă  transfĂ©rer l'oxygĂšne vers le substrat en phase organique. Une optimisation des paramĂštres rĂ©actionnels a Ă©tĂ© effectuĂ©e avec le catalyseur le plus performant. De plus, deux protocoles ont Ă©tĂ© mis au point, pour la prĂ©paration in-situ du catalyseur et pour sa rĂ©cupĂ©ration en fin de rĂ©action. Le procĂ©dĂ© a Ă©tĂ© gĂ©nĂ©ralisĂ© Ă  des dĂ©rivĂ©s d acides gras dans le but d obtenir d'autres acides Ă  chaĂźnes courtes, rĂ©pondant Ă  une large gamme d'applications. Le gain environnemental liĂ© Ă  ce nouveau procĂ©dĂ© a Ă©tĂ© Ă©valuĂ© par le calcul d indicateurs verts. Afin d envisager un recyclage plus aisĂ© du catalyseur, l anion oxodiperoxotungstate {PO4[WO(O2)2]4}3-, l espĂšce active du catalyseur, a Ă©tĂ© supportĂ© sur des rĂ©sines Ă©changeuses d anions. Deux types de rĂ©sines macroporeuses ont Ă©tĂ© testĂ©es : des rĂ©sines commerciales (Amberlite IRA 900 et Lewatit K7367) et des rĂ©sines modifiĂ©es (type Merrifield). Nous avons montrĂ© que ces derniĂšres conduisent Ă  de meilleurs rendements de scission oxydative de l acide olĂ©ique que les rĂ©sines commerciales, et ce, malgrĂ© la prĂ©sence de solvants. Cependant, l immobilisation de l anion oxodiperoxotungstate sur les rĂ©sines commerciales a permis la synthĂšse en une seule Ă©tape d acĂ©tals, composĂ©s prĂ©sentant un grand intĂ©rĂȘt pour la synthĂšse de dĂ©rivĂ©s Ă  haute valeur ajoutĂ©e. En utilisant l acĂ©tone, Ă  la fois comme rĂ©actif et solvant, nous avons obtenu de bons rendements en cĂ©tal. De plus, la rĂ©action d acĂ©talisation one-pot de l acide olĂ©ique a pu ĂȘtre Ă©tendue Ă  d autres solvants (alcools), offrant la possibilitĂ© de synthĂ©tiser un large panel d acĂ©tals. Le procĂ©dĂ© dĂ©veloppĂ© est particuliĂšrement intĂ©ressant car il conduit directement Ă  la synthĂšse d acĂ©tals ou de cĂ©tals Ă  partir d un acide gras insaturĂ© biosourcĂ©, en Ă©vitant les Ă©tapes de rĂ©actions intermĂ©diaires.In a context of scarce oil resources and environmental pressures, the chemical industry needs to innovate by developing new production chains aiming the design of bioproducts from biobased raw materials. Unsaturated fatty acids derived from vegetable oils, thus represents renewable resources with a great potential, allowing to diversify petroleum based supplies. Our interest is focused on the oxidative cleavage reaction of unsaturated fatty acids to yield mono-acids and di-acids with shorter and odd hydrocarbon chains, which are not available at a natural state. Such hydrocarbon chains are attractive for industry because they meet specific properties. But, they are currently only produced from fossil resources. Therefore, the objective was to develop an efficient method for oxidative cleavage, less expensive and less polluting than ozonolysis, the only operational industrial process. The selected oxidizing conditions employs hydrogen peroxide as oxidant, together with a phase transfer catalyst, without using an organic solvent. Several phase transfer catalysts Q3{PO4[WO(O2)2]4} were prepared from tungstophosphoric acid, hydrogen peroxide and a quaternary ammonium salt (Q+,Cl-), in order to compare their effectiveness in transferring oxygen to the substrate in the organic phase. An optimization of reaction parameters was carried out with the most performing catalyst. In addition, two protocols have been developed for the in-situ preparation of the catalyst and its recovery after reaction. The method was extended to fatty acids derivatives, in order to obtain other short chain acids, having a wide range of applications. The environmental benefits associated with this new method were evaluated by calculating green indicators. To consider an easier recycling of the catalyst, the oxodiperoxotungstate anion {PO4[WO(O2)2]4}3-, the active species of the catalyst was supported on anion-exchange resins. Two types of macroporous resins were tested: commercial resins (Amberlite IRA 900 and Lewatit K7367) and modified resins (type Merrifield). We showed that the modified resins, lead to the oxidative cleavage of oleic acid with higher yields than commercial ones, despite the presence of solvent. However, the immobilisation of the oxodiperoxtungstate anion on commercial resins allows the one-step synthesis of acetals, compounds of great interest for the synthesis of derivatives with a high added value. Using acetone as both reagent and solvent, we obtained good yields in ketal. Furthermore, the "one-pot" acetalization reaction of oleic acid was extended to other solvents (alcohols) as an opportunity to synthesize a wide range of acetals. The developed process is particularly interesting as it leads to the direct synthesis of ketal or acetals from an unsaturated fatty acid, avoiding the intermediate reaction stepsTOULOUSE-INP (315552154) / SudocSudocFranceF

    New eco-friendly processes of oxydation of oleic acid

    No full text
    Dans un contexte de rarĂ©faction des ressources pĂ©troliĂšres et de pressions environnementales, l’industrie chimique a besoin d'innover en dĂ©veloppant de nouvelles filiĂšres destinĂ©es Ă  l'Ă©laboration de bioproduits, Ă  partir de matiĂšres premiĂšres d'origine vĂ©gĂ©tale. Les acides gras insaturĂ©s obtenus Ă  partir des huiles vĂ©gĂ©tales, constituent ainsi une ressource renouvelable Ă  fort potentiel permettant de diversifier les approvisionnements d'origine pĂ©troliĂšre. Notre intĂ©rĂȘt s'est portĂ© sur la rĂ©action de scission oxydative d’acides gras insaturĂ©s pour conduire Ă  des monoacides et diacides Ă  chaĂźnes courtes et impaires, peu ou pas disponibles Ă  l’état naturel. Ce type de chaĂźnes hydrocarbonĂ©es est recherchĂ© dans l’industrie, car elles possĂšdent des propriĂ©tĂ©s spĂ©cifiques, mais elles ne sont actuellement produites qu'Ă  partir de ressources fossiles. L'objectif Ă©tait donc de mettre au point un procĂ©dĂ© de clivage oxydatif performant, moins onĂ©reux et moins polluant que l’ozonolyse, le seul procĂ©dĂ© industriel opĂ©rationnel. Les conditions oxydantes sĂ©lectionnĂ©es font appel Ă  l’eau oxygĂ©nĂ©e en tant qu’oxydant, associĂ©e Ă  un catalyseur de transfert de phase, sans avoir recours Ă  un solvant organique. Plusieurs catalyseurs de transfert de phase Q3{PO4[WO(O2)2]4} ont Ă©tĂ© prĂ©parĂ©s Ă  partir de l’acide tungstophosphorique, d’eau oxygĂ©nĂ©e et d'un sel d’ammonium quaternaire (Q+,Cl-), afin de comparer leur efficacitĂ© Ă  transfĂ©rer l'oxygĂšne vers le substrat en phase organique. Une optimisation des paramĂštres rĂ©actionnels a Ă©tĂ© effectuĂ©e avec le catalyseur le plus performant. De plus, deux protocoles ont Ă©tĂ© mis au point, pour la prĂ©paration in-situ du catalyseur et pour sa rĂ©cupĂ©ration en fin de rĂ©action. Le procĂ©dĂ© a Ă©tĂ© gĂ©nĂ©ralisĂ© Ă  des dĂ©rivĂ©s d’acides gras dans le but d’obtenir d'autres acides Ă  chaĂźnes courtes, rĂ©pondant Ă  une large gamme d'applications. Le gain environnemental liĂ© Ă  ce nouveau procĂ©dĂ© a Ă©tĂ© Ă©valuĂ© par le calcul d’indicateurs verts. Afin d’envisager un recyclage plus aisĂ© du catalyseur, l’anion oxodiperoxotungstate {PO4[WO(O2)2]4}3-, l’espĂšce active du catalyseur, a Ă©tĂ© supportĂ© sur des rĂ©sines Ă©changeuses d’anions. Deux types de rĂ©sines macroporeuses ont Ă©tĂ© testĂ©es : des rĂ©sines commerciales (Amberlite IRA 900 et Lewatit K7367) et des rĂ©sines modifiĂ©es (type Merrifield). Nous avons montrĂ© que ces derniĂšres conduisent Ă  de meilleurs rendements de scission oxydative de l’acide olĂ©ique que les rĂ©sines commerciales, et ce, malgrĂ© la prĂ©sence de solvants. Cependant, l’immobilisation de l’anion oxodiperoxotungstate sur les rĂ©sines commerciales a permis la synthĂšse en une seule Ă©tape d’acĂ©tals, composĂ©s prĂ©sentant un grand intĂ©rĂȘt pour la synthĂšse de dĂ©rivĂ©s Ă  haute valeur ajoutĂ©e. En utilisant l’acĂ©tone, Ă  la fois comme rĂ©actif et solvant, nous avons obtenu de bons rendements en cĂ©tal. De plus, la rĂ©action d’acĂ©talisation « one-pot » de l’acide olĂ©ique a pu ĂȘtre Ă©tendue Ă  d’autres solvants (alcools), offrant la possibilitĂ© de synthĂ©tiser un large panel d’acĂ©tals. Le procĂ©dĂ© dĂ©veloppĂ© est particuliĂšrement intĂ©ressant car il conduit directement Ă  la synthĂšse d’acĂ©tals ou de cĂ©tals Ă  partir d’un acide gras insaturĂ© biosourcĂ©, en Ă©vitant les Ă©tapes de rĂ©actions intermĂ©diaires.In a context of scarce oil resources and environmental pressures, the chemical industry needs to innovate by developing new production chains aiming the design of bioproducts from biobased raw materials. Unsaturated fatty acids derived from vegetable oils, thus represents renewable resources with a great potential, allowing to diversify petroleum based supplies. Our interest is focused on the oxidative cleavage reaction of unsaturated fatty acids to yield mono-acids and di-acids with shorter and odd hydrocarbon chains, which are not available at a natural state. Such hydrocarbon chains are attractive for industry because they meet specific properties. But, they are currently only produced from fossil resources. Therefore, the objective was to develop an efficient method for oxidative cleavage, less expensive and less polluting than ozonolysis, the only operational industrial process. The selected oxidizing conditions employs hydrogen peroxide as oxidant, together with a phase transfer catalyst, without using an organic solvent. Several phase transfer catalysts Q3{PO4[WO(O2)2]4} were prepared from tungstophosphoric acid, hydrogen peroxide and a quaternary ammonium salt (Q+,Cl-), in order to compare their effectiveness in transferring oxygen to the substrate in the organic phase. An optimization of reaction parameters was carried out with the most performing catalyst. In addition, two protocols have been developed for the in-situ preparation of the catalyst and its recovery after reaction. The method was extended to fatty acids derivatives, in order to obtain other short chain acids, having a wide range of applications. The environmental benefits associated with this new method were evaluated by calculating green indicators. To consider an easier recycling of the catalyst, the oxodiperoxotungstate anion {PO4[WO(O2)2]4}3-, the active species of the catalyst was supported on anion-exchange resins. Two types of macroporous resins were tested: commercial resins (Amberlite IRA 900 and Lewatit K7367) and modified resins (type Merrifield). We showed that the modified resins, lead to the oxidative cleavage of oleic acid with higher yields than commercial ones, despite the presence of solvent. However, the immobilisation of the oxodiperoxtungstate anion on commercial resins allows the one-step synthesis of acetals, compounds of great interest for the synthesis of derivatives with a high added value. Using acetone as both reagent and solvent, we obtained good yields in ketal. Furthermore, the "one-pot" acetalization reaction of oleic acid was extended to other solvents (alcohols) as an opportunity to synthesize a wide range of acetals. The developed process is particularly interesting as it leads to the direct synthesis of ketal or acetals from an unsaturated fatty acid, avoiding the intermediate reaction step

    Variational radial solutions and numerical simulations for a kinetic model of a cylindrical Langmuir probe

    No full text
    We study, both theoretically and numerically, qualitative and quantitative properties of the solutions a Vlasov-Poisson system modeling the interaction between a plasma and a cylindrical Langmuir probe. In particular, we exhibit a class of radial solutions for which the electrostatic potential is increasing concave with a strong variation in the vicinity of the probe which scales as the inverse of the Debye length. These solutions are proven to exist provided the incoming distributions of particles from the plasma verify the so called generalized Bohm condition of plasma physics. It extends the study [1]. Small perturbations of the radial semi-Maxwellian incoming distributions are then investigated numerically. We notably observe potential barriers that lead to the existence of unpopulated trapped orbits and to the presence of particles that by bypass the probe. Curves of the collected current versus its applied voltage are also presented. This work is the continuity of the previous work [2] where the existence of solutions has been proven

    From crops to products for crops: preserving the ecosystem through the use of bio-based molecules

    No full text
    In a context of dwindling oil reserves and environmental pressures, the chemical industry needs to innovate by developing new processes for producing bioproducts from raw plant materials. Unsaturated fatty acids from vegetable oils constitute a highly promising renewable resource that can be used to diversify productions, decreasing reliance on petroleum. A starting material rich in oleic acid has been obtained through the selection of high-oleic sunflower varieties and enzymatic hydrolysis of the oil they produce. The double bonds of this unsaturated raw material have been cleaved in green oxidizing conditions involving a biphasic lipophilic-aqueous system including hydrogen peroxide as an oxidant and a peroxo-tungsten complex Q3 {PO2[WO(O2)2]4} as a phase-transfer catalyst (PTC) and co-oxidant. This PTC efficiently transferred oxygen to the substrate in the lipophilic phase. A mono-acid (pelargonic acid) and a di-acid (azelaic acid), with shorter, unusual hydrocarbon chains not present in the natural state, were synthesized and purified through an intensive process. Pelargonic acid was then formulated as an environmentally friendly biocontrol agent for weeds. We extended this green process of oxidative scission to other fatty acids and derivatives, to obtain other short-chain acids with diverse potential applications. This production chain (crops, reaction and purification processes, products, applications) is based on a sustainable development strategy

    Essential role of chicken ovalbumin upstream promoter-transcription factor II in insulin secretion and insulin sensitivity revealed by conditional gene knockout

    No full text
    Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) has been implicated in the control of blood glucose by its potent effect on expression and signaling of various nuclear receptors. To understand the role of COUP-TFII in glucose homeostasis, conditional COUP-TFII-deficient mice were generated and crossed with mice expressing Cre under the control of rat insulin II gene promoter, resulting in deletion of COUP-TFII in pancreatic beta-cells. Homozygous mutants died before birth for yet undetermined reasons. Heterozygous mice appeared healthy at birth and showed normal growth and fertility. When challenged intraperitoneally, the animals had glucose intolerance associated with reduced glucose-stimulated insulin secretion. Moreover, these heterozygous mice presented a mild increase in fasting and random-fed circulating insulin levels. In accordance, islets isolated from these animals exhibited higher insulin secretion in low glucose conditions and markedly decreased glucose-stimulated insulin secretion. Their pancreata presented normal microscopic architecture and insulin content up to 16 weeks of study. Altered insulin secretion was associated with peripheral insulin resistance in whole animals. It can be concluded that COUP-TFII is a new, important regulator of glucose homeostasis and insulin sensitivity

    Variations in cometary dust composition from Giotto to Rosetta, clues to their formation mechanisms

    No full text
    International audienceThis paper reviews the current knowledge on the composition of cometary dust (ice, minerals and organics) in order to constrain their origin and formation mechanisms. Comets have been investigated by astronomical observations, space missions (Giotto to Rosetta), and by the analysis of cometary dust particles collected on Earth, chondritic porous interplanetary dust particles (CP-IDPs) and ultracarbonaceous Antarctic micrometeorites (UCAMMs). Most ices detected in the dense phases of the interstellar medium (ISM) have been identified in cometary volatiles. However, differences also suggest that cometary ices cannot be completely inherited from the ISM. Cometary minerals are dominated by crystalline Mg-rich silicates, Fe sulphides and glassy phases including GEMS (glass with embedded metals and sulphides). The crystalline nature and refractory composition of a significant fraction of the minerals in comets imply a high temperature formation/processing close to the proto-Sun, resetting a possible presolar signature of these phases. These minerals were further transported up to the external regions of the disc and incorporated in comet nuclei. Cometary matter contains a low abundance of isotopically anomalous minerals directly inherited from the presolar cloud. At least two different kinds of organic matter are found in dust of cometary origin, with low or high nitrogen content. N-poor organic matter is also observed in primitive interplanetary materials (like carbonaceous chondrites) and its origin is debated. The N-rich organic matter is only observed in CP-IDPs and UCAMMs and can be formed by Galactic cosmic ray irradiation of N2- and CH4-rich icy surface at large heliocentric distance beyond a ‘nitrogen snow line’
    corecore